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tWe present a novel information theoreti
 al-gorithm for unsupervised segmentation of se-quen
es into alternating Variable MemoryMarkov sour
es. The algorithm is based on
ompetitive learning between Markov mod-els, when implemented as Predi
tion SuÆxTrees (Ron et al., 1996) using the MDL prin-
iple. By applying a model 
lustering pro-
edure, based on rate distortion theory 
om-bined with deterministi
 annealing, we ob-tain a hierar
hi
al segmentation of sequen
esbetween alternating Markov sour
es. The al-gorithm seems to be self regulated and au-tomati
ally avoids over segmentation. Themethod is applied su

essfully to unsuper-vised segmentation of multilingual texts intolanguages where it is able to infer 
orre
tlyboth the number of languages and the lan-guage swit
hing points. When applied toprotein sequen
e families, we demonstratethe method's ability to identify biologi
allymeaningful sub-sequen
es within the pro-teins, whi
h 
orrespond to important fun
-tional sub-units 
alled domains.1. Introdu
tionUnsupervised segmentation of sequen
es has be
omea fundamental problem with many important appli
a-tions su
h as analysis of texts, handwriting and spee
h,neural spike trains and bio-mole
ular sequen
es. Themost 
ommon statisti
al approa
h to this problem, us-ing hidden Markov models (HMM), was originally de-veloped for the analysis of spee
h signals, but be
amethe method of 
hoi
e for statisti
al segmentation ofmost natural sequen
es. HMMs are prede�ned para-metri
 models and their su

ess 
ru
ially depends onthe 
orre
t 
hoi
e of the state model - the observa-

tion distribution atta
hed to ea
h of the states of theMarkov 
hain. In the 
ommon appli
ation of HMMthe ar
hite
ture and topology of the model are prede-termined and the memory is limited to �rst order. It israther diÆ
ult to generalize these models to hierar
hi-
al stru
tures with unknown a-priory state-topology(see (Fine et al., 1998) for an attempt).An interesting alternative to the HMM was proposedin Ron et al. (1996) in the form of a sub 
lass of prob-abilisti
 �nite automata, the variable memory Markov(VMM) sour
es. While these models 
an be weaker asgenerative models, they have several important advan-tages: (i) they 
apture longer 
orrelations and higherorder statisti
s of the sequen
e; (ii) they 
an be learnedin a provably optimal PAC like sense using a 
on-stru
tion 
alled predi
tion suÆx tree (PST)(Ron et al.,1996); (iii) they 
an be learned very eÆ
iently by lineartime algorithms (Apostoli
o & Bejerano, 2000); and(iv) their topology and 
omplexity are determined bythe data.This paper presents a powerful new extension of theVMM model and the PST algorithm to a sto
has-ti
 mixture of su
h models, that are learned in a hi-erar
hi
al 
ompetitive way using a deterministi
 an-nealing (DA) (Rose, 1998) approa
h. This problemis generally 
omputationally hard, similarly to data
lustering. Only very simple sequen
es 
an be 
or-re
tly segmented eÆ
iently in general (Freund & Ron,1995). Our model 
an in fa
t be viewed as an HMMwith a VMM atta
hed to ea
h state, but the learn-ing algorithm allows a 
ompletely adaptive stru
tureand topology both for ea
h state and for the wholemodel. The approa
h we take is information theo-reti
 in nature. The goal is to enable short des
riptionof the data by a (soft) mixture of variable memoryMarkov models, ea
h one 
ontrolled by an MDL prin-
iple (see (Barron et al., 1998) for a review). Thiswe do by modifying the original PST algorithm usingthe MDL formulation, while preserving its good learn-



ability properties. The mixture model is then learnedvia a generalized rate distortion theory (see Cover andThomas (1991), Ch. 13) approa
h. Here we take thelog-likelihood of the data by ea
h model as an e�e
-tive distortion measure between the sequen
e and itsrepresentative model and apply the Blahut-Arimoto(BA) algorithm (see Cover and Thomas (1991)) to op-timally partition the sequen
e(s) between the VMMmodel 
entroids. Just like in many 
lustering algo-rithms we then update the models based on this op-timal partition of the sequen
e(s). In this way a nat-ural resolution parameter is introdu
ed through the
onstraint on the expe
ted tolerated distortion. This\temperature" like Lagrange multiplier is further usedin the deterministi
 annealing loop to 
ontrol the res-olution of the model. The hierar
hi
al stru
ture is ob-tained by allowing the models to split (the re�nementstep) after 
onvergen
e of the iterations between theBA algorithm and the VMM 
entroids update.This new algorithm exhibits several interesting fea-tures whi
h will be further dis
ussed elsewhere. Itturns out that the interplay between the MDL andthe DA pro
edure prevents \over segmentation", byeliminating small models that fails to 
apture enoughdata. The model is thus \self regulated" in an inter-esting way. The algorithm is des
ribed in Se
. 2, 3 andfurther dis
ussed in Se
. 5.In Se
. 4 we apply the algorithm to two types ofdatasets. The �rst is a mixture of inter
hanged textsin 5 di�erent European languages. The model wasable to identify both the 
orre
t number of languagesand the segmentation of the text sequen
e betweenthe languages to a resolution of a few letters. We thenapply the algorithm to the mu
h harder problem ofprotein segmentation. We brie
y show here that thealgorithm is able to identify biologi
ally meaningfulsub-sequen
es within the proteins, whi
h 
orrespondto important fun
tional sub-units known as proteindomains. This extends earlier work on protein 
lassi-�
ation using the PST algorithm (Bejerano & Yona,2001) and opens a way for new appli
ations of this ap-proa
h in bioinformati
s, further pursued in (Bejeranoet al., 2001) and elsewhere.2. Single Sour
e ModelingIn this se
tion we will de�ne variable memory Markovpro
esses, review an eÆ
ient data stru
ture for theirrepresentation from (Ron et al., 1996) and present anew non-parametri
 learning algorithm that we willlater use as a 
ore for the segmentation pro
ess.

2.1 Variable Memory Markov Pro
essesGiven a string �x, over a �nite alphabet �, that wassequentially generated by some statisti
al sour
e G,the probability that G has generated that parti
u-lar sequen
e 
an always be written as: PG(�x) =PG(x1::xn) = Qni=1 PG(xijx1::xi�1). In this se
tionwe assume G to be stationary and ergodi
 (Cover &Thomas, 1991). We de�ne a 
ontext of xi to be anysubstring xi�m::xi�1 for m � 0. If m = 0 we saythat the 
ontext of xi is the empty string, denotedby �. Further we de�ne C to be any �nite subset ofstrings in �� that in
ludes �. We say that xi�m::xi�1,or �, is the C-
ontext of xi if it is the longest suÆxof x1::xi�1 in C. Pro
ess G respe
ts 
ontext set C ifPG(xijx1::xi�1) = PG(xijC-
ontext(xi)) for all i. Thelength of C-
ontext(xi) is the memory of pro
ess G atpla
e i, and it may vary with i.2.2 Predi
tion SuÆx Trees (PSTs)A 
ontext set C may be eÆ
iently represented using atree. By asso
iating a distribution ve
tor over � withea
h node of the tree we get a PST1 (see Fig. 1). For-mally, a PST T is a j�j-ary tree that satis�es:1. For ea
h node ea
h outgoing edge is labeled by asingle symbol � 2 �, while there is at most one edgelabeled by ea
h symbol.2. Ea
h node of the tree is labeled by a unique strings (a 
ontext) that 
orresponds to a 'walk' starting fromthat node and ending in the root of the tree. We iden-tify nodes with their labels and label the root node bythe empty string �.3. A probability ve
tor Ps(�) is asso
iated with ea
hnode s. Ps(�) represents the distribution over the sym-bol 
oming immediately after 
ontext s2.We de�ne sufT (x1::xi) as the longest sequen
exi�m::xi that makes a path in T when we start fromthe root and traverse the edge labeled by xi, from therewe traverse the edge labeled by xi�1 et
., until there isno appropriate edge to 
ontinue with or we have tra-versed the whole string3. If there is no edge labeledby xi at the root we say that sufT (x1::xi) = �. The
olle
tion of all node labels in T make up our set ofmemorized 
ontexts. (It is easy to see that any 
ontextset may be represented by a PST.)1A Predi
tion SuÆx Tree is related to, but di�ers froma 
lassi
al suÆx tree (see (Apostoli
o & Bejerano, 2000)).2Ps(�) = P (next symbol is �jlast symbols were s).3Note that we do not ne
essarily stop at a leaf.
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(.05,.25,.4,.25,.05 )(.1,.1,.35,.35,.1)Figure 1. An example of a PST over the alphabet � =fa; b; k; l; rg. The ve
tor near ea
h node is the probabilitydistribution for the next symbol. E.g., the probability toobserve k after the substring bara, whose largest suÆx inthe tree is ra, is P (kjbara) = Pra(k) = 0:4.2.3 Predi
ting and Generating using PSTsHere we de�ne the probability measure that a PST Tindu
es on the spa
e of all strings �x 2 �n, for any givenn. Given a string �x 2 �n and a PST T the probabilitythat �x was generated by T is:PT (�x) = nYi=1PT (xijx1::xi�1) = nYi=1PsufT (x1::xi�1)(xi)When T is used as a generator, it generates a symbolxi a

ording to the distribution PsufT (x1::xi�1).For the sake of 
onsisten
y we would like the internalnodes of T to hold marginal distributions: Ps(�) =P�̂2� PT (�̂s)PT (s) P�̂s(�).2.4 Learning PSTsWe now turn to present a new MDL driven algorithmfor PST learning. The algorithm is non-parametri
and exhibits self-regularization. It is generalized tohandle weighted data, whi
h will appear later on.The inputs to the algorithm are a string �x = x1::xnand a ve
tor of weights �w = w1::wn, where ea
h wiis a weight asso
iated with xi (0 � wi � 1)4. Wewill denote w(xi) � wi. You may think of w(xi) as ameasure of 
on�den
e we give to the observation xi.For now you may assume all wi = 1.For a string s we say that sxi 2 �x if it is a substringof �x ending at pla
e i. We de�ne:ws(�) � Xxi=� and sxi2�xw(xi)and w(s) �P�2� ws(�). Clearly ws(�)w(s) is an empiri
alestimate for Ps(�).4Generalization to a set of strings is straightforward andtherefore omitted here for ease of notation.

The idea behind MDL is to minimize the total length(in bits) of model des
ription together with the 
odelength of the data when it is en
oded using the model.When 
oding a single node s we should enumerate itssons and en
ode the distribution ve
tor Ps. The �rsttakes j�j bits - bit � denotes the presen
e of son �. Forthe se
ond it is suÆ
ient to 
ode all the 
ounts ws(�).Sin
e the total amount of data \passing through" nodes5 is w(s) the 
ounts should be 
oded to within a

u-ra
y pw(s). Thus the des
ription size of s is:Size(s) = j�j+ j�j2 � log2(w(s))Denoting by Ts the subtree of T rooted at node s:Size(Ts) = Size(s) + X�s2T Size(T�s)(s 2 T means that s is a node in T ). The minimalaverage 
ode length per symbol, for all symbols 
odedusing node s, is given by the entropy of Ps, H(Ps) ��P�2� Ps(�) � log2(Ps(�)). The equivalent quantityfor a subtree Ts is thus a weighted sum given by:H(Ts) = X�s2T w(�s)w(s) �H(T�s) + X�s=2T w(�s)w(s) �H(Ps)Summing this altogether we get:TotalSize(Ts) = Size(Ts) + w(s) �H(Ts)Our goal is to minimize TotalSize(�) whi
h is the totaldes
ription length of the whole tree together with all
oded data (as all data passes through the root node�). The algorithm works in two steps. In step I weextend all the nodes that are potentially bene�
ial, i.e.by using them we may de
rease the total size. Clearlyonly those nodes whose des
ription size is smaller thanthe 
ode length of data passing through them whenthat data is 
oded using the parent node distributionare of interest. In step II the tree is re
ursively prunedso that only truly bene�
ial nodes remain. If a 
hildsubtree T�s of some node s gives better 
ompression(respe
ting its own des
ription length) than that of itsparent node, that subtree is left, otherwise it is pruned.The algorithm is given in Fig. 23. Sequen
e Segmentation AlgorithmNow suppose that a given string �x was generated byrepeatedly swit
hing between several di�erent PSTmodels with some upper bound on the alternationrate. I.e., there are k PSTs and a partition of �x into5suf(x1::xi�1) ends with s.



Learn PST(String �x, Weights �w)1. T = Build PST(�x, �w)2. Prune(T , �)The two steps:I. Build PST (String �x, Weights �w)1. Start with T having a single node �.2. Re
ursively for ea
h s 2 T and � 2 �If Size(�s) < H(Ps) � w(�s) ThenAdd node �s to T .II. Prune (Tree T , node s)1. For ea
h � 2 � su
h that �s 2 T :(a) Prune(�s)(b) If TotalSize(T�s) > H(Ps) � w(�s) ThenDelete subtree T�sFigure 2. The PST learning algorithm.l � k 
ontiguous segments, with length of ea
h seg-ment greater than some 
onstant value L, su
h thatea
h segment was generated by a single PST out of k.Our goal is to �nd k0 PST models and a segmentationof �x that will be as 
lose as possible to the originalones.This problem is similar to the problem of �nding thebest number and parameters for a Gaussian mixturemodel of points in Rn. Given a string �x and a ve
-tor of assignment probabilities we 
an build a PSTmodel and estimate its parameters. Alternatively, agiven model indu
es probabilities on all substrings of�x. Alternating between these two estimations is theessen
e of the EM algorithm in any mixture model.This alternating estimation algorithm 
an be embed-ded in a deterministi
 annealing (DA) pro
edure toallow for in
reasing resolution, or number of mixture
omponents. In our 
ase, however, we do not allowour PST models to swit
h at every symbol, but ratherrequire 
ontiguous segments. The fundamental reasonfor limiting the model swit
hing frequen
y is that tooshort segments do not enable reliable dis
riminationbetween di�erent models.We apply deterministi
 annealing sin
e it 
an avoidlo
al minima e�e
tively and it is an elegant frameworkfor generating hierar
hi
al stru
tures, though it mayprodu
e sub-optimal results (see (Rose, 1998)).Next we give some de�nitions and des
ribe the Blahut-Arimoto and our soft 
lustering algorithm. We thenembed it in the DA framework to obtain the hierar
hi-
al segmentation. See Fig. 3 for s
hemati
 des
riptionof the 
omplete algorithm.
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Figure 3. A s
hemati
 des
ription of the algorithm.3.1 De�nitionsLet T = fTjgkj=1 be the set of PSTs of size k we are
urrently working with. We de�ne wj(xi) � P (Tj jxi)to be the probability that a symbol xi is assigned tomodel Tj6.In order to estimate the quality of a given partition wede�ne a distan
e (lo
al distortion) between a symbolxi and a model Tj to be negative log likelihood of Tjon a window of size 2M + 1 around xi:d(xi; Tj) = � i+MX�=i�M lnPTj (x�jx1::x��1) :The role of the window is to smooth the segmentationand to enable reliable estimation of the log-likelihood.The global distortion, i.e. the average distan
e betweensegments and the 
orresponding models, of an assign-ment is given by:hdi = 1n nXi=1 kXj=1 d(xi; Tj) � P (Tj jxi) :3.2 The Blahut-Arimoto AlgorithmFirst we want to �nd the optimal assignment proba-bilities P (Tj jxi) for a �xed set of PST models, T , 
on-strained by the allowed distortion levelD. Rate distor-tion theory (Cover & Thomas, 1991, Ch. 13) providesus with the optimal assignment via:minfP (Tj jxi) : hdi�D;Pkj=1 P (Tj jxi)=1g I(�x; T ) (1)6The ve
tor of weights �wj is later used to retrain Tj .



where I is the mutual information between �x and TI(�x; T ) = 1n nXi=1 kXj=1 P (Tj jxi) � log P (Tj jxi)P (Tj)and P (Tj) the proportion of data assigned to model jP (Tj) = 1n nXi=1 P (Tj jxi)In rate distortion theory Eq. 1 is 
alled the rate dis-tortion fun
tion, and is denoted by R(D).By minimizing the mutual information we in fa
t en-able minimal des
ription length of the sequen
es us-ing the PST models, subje
t to a given distortion
onstraint. Sin
e our distortion, an expe
ted log-likelihood, is also the optimal 
ode length by themodel, it is fully 
onsistent with the MDL framework.We thus try to �nd a mixture of PSTs that enable shortdes
ription of the 
omplete observation sequen
e, un-der some 
ontiguity requirements from the resultingsegmentation.We employ the alternating minimization pro
edure,known as the Blahut-Arimoto algorithm, whi
h isguaranteed to 
onverge to the optimal assignment:Blahut-Arimoto(P (T1); ::; P (Tk), �)Repeat until 
onvergen
e:1. 8i; j : P (Tj jxi) = P (Tj)e��d(xi;Tj)Pk�=1 P (T�)e��d(xi;T�)2. 8j : P (Tj) = 1nPni=1 P (Tj jxi)Here the distortion 
onstraint, D, is imposed by the
orresponding Lagrange multiplier �.3.3 Soft ClusteringNow we go one step further by allowing to modify thePST models. This is analogous to the 
entroid re-estimation in 
lustering. We want to obtain a good(low distortion) segmentation of �x for a given value of� (the assignment probabilities are given by 1: in theBA algorithm).We approa
h this problem using a soft 
lustering pro-
edure. Given an initial set of k PSTs T , we parti-tion the sequen
e using the BA algorithm and thenretrain all k PSTs, using the assignment probabilitiesP (Tj jxi) obtained from the BA as weight ve
tors �wjfor the Learn PST pro
edure. These two steps are re-peated until 
onvergen
e:

Soft Clustering(T , P (T1); ::; P (Tk), �)Repeat until 
onvergen
e:1. Blahut-Arimoto(P (T1); ::; P (Tk), �)2. 8j : Tj = Learn PST(�x, �wj)Here the Lagrange multiplier � plays the role of res-olution parameter and prevents from falling into lo
alminima.At every given distortion level, D, a limited numberof PSTs K is suÆ
ient to a
hieve D. When k > Ksome of the PSTs 
ollapse into a single model - a phe-nomenon 
learly des
ribed in (Rose, 1998) - or remainwithout data (P (Tj) = 0). The latter is 
aused by therequirement of having 
ontiguous segments in the �nalsegmentation. Be
ause of this requirement the 
om-petition between the models \pushes out" the mod-els who don't \a
quire" enough data in favor of thosehaving more data. In this manner the algorithm \selfregulates" its global 
omplexity.3.4 Deterministi
 Annealing andthe Segmentation AlgorithmThe lands
ape of the problem de�ned in this se
tionis typi
ally riddled with lo
al minima and it is 
om-putationally diÆ
ult to obtain the optimal solution.Usually a su

essful way of �nding a good solution isthrough deterministi
 annealing: a series of solutionsto the soft 
lustering problem is found, starting froma low value of resolution (inverse \temperature") pa-rameter � and gradually in
reasing it, while allowingmodels to split in two when ne
essary.The splitting pro
edure is straightforward:Split PSTs(T , P (T1); ::; P (Tk))Repla
e ea
h Tj in T by two new models:1. Start with two exa
t 
opies of Tj : Tj1 and Tj22. For ea
h node s in Tj and for ea
h � 2 �:(a) Sele
t f� = 1; � = 2g or f� = 2; � = 1gwith probability 12 / 12 .(b) Perturb and normalize the 
ounts ve
tors:For Tj� : ws(�) = (1 + 
) �ws(�) (j
j � 1)For Tj� : ws(�) = (1� 
) � ws(�)3. P (Tj1 ) = 12P (Tj); P (Tj2) = 12P (Tj)For ea
h PST T in T we 
reate two 
opies of T andperform random antisymmetri
 perturbations of the
ounts ve
tors in ea
h node of the two 
opies. Thenwe repla
e T with the two obtained PSTs while dis-tributing P (T ) equally among them.We are �nally ready to outline the 
omplete algorithm.



We start with T in
luding a single \average" PST Tthat is trained on the full sequen
e �x with w(xi) = 1for all i. We pi
k an initial value of �, split T andpartition �x among the resulting models, T1 and T2.We then split T again and repeat. If a model is foundto have lost its data it is eliminated. When the numberof survived models stops in
reasing we in
rease � andthen repeat the whole pro
ess.The segmentation algorithm:Initialization:For all i, w1(xi) = 1T1 = Learn PST(�x, �w1)T = fT1g, P (T1) = 1� = �0, kprev = jT jAnnealing loop:1. Split PSTs(T , P (T1); ::; P (Tk))2. Soft Clustering(T , P (T1); ::; P (Tk), �)3. Remove all Tj su
h that P (Tj) = 0 from T .4. If kprev � jT j thenIn
rease �5. kprev = jT jSets of segments that are assigned with high probabil-ity to the same model over a long range of � are stable
lusters that 
ontain important information about thestatisti
al stru
ture of our sample.4. Appli
ations: Multilingual Text andProtein Sequen
e SegmentationIn our �rst example we 
onstru
t a syntheti
 text 
om-posed of alternating fragments of �ve other texts in �vedi�erent languages: English, German, Italian, Fren
hand Russian, using standard trans
ripts to 
onvert allinto lower 
ase Latin letters with blank substituting allseparators. The length of ea
h fragment taken is 100letters, whi
h means that we are swit
hing languagesevery two senten
es or so. The total length of the textwas 150000 letters (30000 from ea
h language).We made several independent runs of our algorithm.In every run, after 2000-3000 a

umulated innermost(BA) iterations we got a 
lear-
ut, 
orre
t segmenta-tion of the text into segments 
orresponding to thedi�erent languages, a

urate up to a few letters (SeeFig. 4, 5 for a typi
al example)7. Moreover, in all runs,further splitting of all 5 language models resulted instarvation and subsequent removal of 5 extra models,taking us ba
k to the same segmentation as before.7Corre
t segmentation was a
hieved even at a swit
hingrate of 50 letters per segment, but of poorer quality.
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h; TRussiang. Thetrue segmentation appears at the bottom of the graph.Also, in most runs linguisti
ally similar languages (En-glish and German, Fren
h and Italian) separated atlater stages of the segmentation pro
ess (Fig. 6 givesan example), suggesting a hierar
hi
al stru
ture overthe dis
overed data sour
es.Next, we brie
y demonstrate the potential of applyingour method to protein domain dis
overy and 
lassi�
a-tion. A domain is de�ned as an autonomous fun
tionalsub-unit of a protein. Having used a family of relatedprotein sequen
es as our text8, Fig. 7 shows for a typ-i
al family member how our models have pinpointedthe two known domains of this protein. The domainsare seen here to 
oin
ide with the two 
onserved re-gions elu
idated in this protein family. The ability tosegment, and in fa
t sub-
lassify these domains in anautomated unsupervised manner holds great potentialand is further explored in (Bejerano et al., 2001).Following a referee's suggestion we tried limiting thedepth (and thus power) of our PST models to examinetheir added bene�t. For languages, using zero depthPSTs (single root node) deteriorated the performan
edrasti
ally. The best we 
ould separate were two lan-guages alternating every 200 letters, and even that atvery poor quality. However, already when limited todepth one, the models performed 
omparable to theunrestri
ted models both for languages and proteins(with some loss in signal strength). This attests to thefa
t that �rst order dependen
ies already suÆ
e to dif-8Ea
h protein sequen
e is represented by a string overa standard alphabet of the 20 amino a
ids.
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orrespondsto i = 70::130. Note the 
orresponden
e of the transi-tion point into German to the English-like beginning \be
harakteristis
h..." of the German segment.ferentiate between sour
es in these parti
ular 
ases.We have also tried to restri
t the BA loop to a singlepass and it appears that for some 
ases this improvesthe performan
e. This happens be
ause fewer BA it-erations leave more pla
e for the soft 
lustering (andthus model retraining) steps, and by looking througha wider range of (intermediate) models the system isable to "sense" and attain better solutions.5. Dis
ussion and Further WorkThe sequen
e segmentation algorithm we des
ribe andevaluate in this paper is a 
ombination of several dif-ferent information theoreti
 ideas and prin
iples, natu-rally 
ombined into one new 
oherent pro
edure. The
ore algorithm, the 
onstru
tion of Predi
tion SuÆxTrees, is essentially a sour
e 
oding loss-less 
ompres-sion method. It approximates a 
omplex sto
hasti
sequen
e by a probabilisti
 automaton, or a Markovmodel with variable memory length. The power ofthis pro
edure, as demonstrated on both natural textsand on protein sequen
es, is in its ability to 
aptureshort strings (suÆxes) that are signi�
ant predi
tors- thus good features - for the statisti
al sour
e. We
ombine the PST 
onstru
tion with another informa-tion theoreti
 idea - the MDL prin
iple - and obtain amore eÆ
ient estimation of the PST, 
ompared withits original learning algorithm.
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β =  1.0 β = 1.1 β = 1.2 β = 1.3Figure 6. Sour
e separation. The proportion of text as-signed to ea
h model is shown for all models, as a fun
tionof the iterations of our innermost loop. Bifur
ations arethe splitting events and graphs dropping o� to zero showmodels dying out. In
rements in � o

ur after the numberof models 
onverges at a given temperature. Languages
aptured by ea
h model after the soft 
lustering has 
on-verged are pointed out. Noti
e how the order in whi
h thelanguages separate from the primary joint model mat
heslanguage relatedness.Our se
ond key idea is to embed the PST 
onstru
-tion in a lossy 
ompression framework by adopting therate-distortion theory into a 
ompetitive learning pro-
edure. Here we treat the PST as a model of a singlestatisti
al sour
e and use the rate distortion framework(i.e., the Blahut-Arimoto algorithm) to partition thesequen
es between several su
h models in an optimalway. Here we spe
i�
ally obtain a more expressive sta-tisti
al model, as mixtures of (short memory, ergodi
)Markov models lay outside of this 
lass, and 
an be
aptured only by mu
h deeper Markov models. Thisis a 
lear advantage of our 
urrent approa
h over mix-tures of HMMs (as done in (Fine et al., 1998)) sin
emixtures of HMMs are just HMMs with 
onstrainedstate topology.The analogy with rate-distortion theory enables us totake advantage of the trade-o� between 
ompression(rate) and distortion, and use the Lagrange multiplier�, required to implement this trade-o�, as a resolu-tion parameter. The deterministi
 annealing frame-work follows naturally in this formulation and providesus with a simple way to obtain hierar
hi
al segmenta-tion of very 
omplex sequen
es. As long as the under-lying statisti
al sour
es are distin
t enough, 
omparedto the average alternation rate between them, our seg-mentation s
heme should perform well.
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PAX homeoboxFigure 7. Segmentation of a member of the PairedBox protein family. The PAX6 SS protein (Swissprota

. O57582) is shown. The boundaries of the two fun
-tional domains of the protein are marked, showing ex
el-lent �t with our unsupervised segmentation, whi
h in fa
tsuggests a �ner sub division within the �rst domain.Several natural extensions of our ideas are possible.One may repla
e the PST with even more eÆ
ientloss-less 
oding s
hemes, su
h as the Context-Tree-Weighting algorithm (Willems et al., 1995). This pow-erful method trades the MDL prin
iple for a Bayesianformulation, essentially averaging eÆ
iently over allpossible PSTs for a given sequen
e. The disadvantagesare the mu
h larger data stru
tures required here, andthe absen
e of the 
lear features that emerge from theVMM model. An opposite approa
h, hinted towardthe end of Se
. 4 suggests that we may bene�t fromrepla
ing our generative sour
e models with dis
rimi-native ones, aimed not so mu
h at 
apturing the sta-tisti
al ri
hness in ea
h sour
e but rather at di�eren-tiating between them.Another interesting extension is the segmentation ofone sequen
e based on the predi
tion of another, re-lated, sequen
e (su
h as the predi
tion of protein stru
-ture from its sequen
e) by repla
ing the PST with itskin, the probabilisti
 transdu
er (Singer, 1997). This
an then be embedded in the information bottlene
kmethod (Tishby et al., 1999), whi
h extends rate dis-tortion theory to relevant 
ompression of one sequen
ewith respe
t to another one, to enable relevant segmen-tation of related pairs of natural sequen
es.A
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