
Unsupervised Sequene Segmentation by aMixture of Swithing Variable Memory Markov SouresYevgeny Seldin seldin�s.huji.a.ilGill Bejerano jill�s.huji.a.ilNaftali Tishby tishby�s.huji.a.ilShool of Computer Siene and Engineering, The Hebrew University, Jerusalem 91904, IsraelAbstratWe present a novel information theoreti al-gorithm for unsupervised segmentation of se-quenes into alternating Variable MemoryMarkov soures. The algorithm is based onompetitive learning between Markov mod-els, when implemented as Predition SuÆxTrees (Ron et al., 1996) using the MDL prin-iple. By applying a model lustering pro-edure, based on rate distortion theory om-bined with deterministi annealing, we ob-tain a hierarhial segmentation of sequenesbetween alternating Markov soures. The al-gorithm seems to be self regulated and au-tomatially avoids over segmentation. Themethod is applied suessfully to unsuper-vised segmentation of multilingual texts intolanguages where it is able to infer orretlyboth the number of languages and the lan-guage swithing points. When applied toprotein sequene families, we demonstratethe method's ability to identify biologiallymeaningful sub-sequenes within the pro-teins, whih orrespond to important fun-tional sub-units alled domains.1. IntrodutionUnsupervised segmentation of sequenes has beomea fundamental problem with many important applia-tions suh as analysis of texts, handwriting and speeh,neural spike trains and bio-moleular sequenes. Themost ommon statistial approah to this problem, us-ing hidden Markov models (HMM), was originally de-veloped for the analysis of speeh signals, but beamethe method of hoie for statistial segmentation ofmost natural sequenes. HMMs are prede�ned para-metri models and their suess ruially depends onthe orret hoie of the state model - the observa-

tion distribution attahed to eah of the states of theMarkov hain. In the ommon appliation of HMMthe arhiteture and topology of the model are prede-termined and the memory is limited to �rst order. It israther diÆult to generalize these models to hierarhi-al strutures with unknown a-priory state-topology(see (Fine et al., 1998) for an attempt).An interesting alternative to the HMM was proposedin Ron et al. (1996) in the form of a sub lass of prob-abilisti �nite automata, the variable memory Markov(VMM) soures. While these models an be weaker asgenerative models, they have several important advan-tages: (i) they apture longer orrelations and higherorder statistis of the sequene; (ii) they an be learnedin a provably optimal PAC like sense using a on-strution alled predition suÆx tree (PST)(Ron et al.,1996); (iii) they an be learned very eÆiently by lineartime algorithms (Apostolio & Bejerano, 2000); and(iv) their topology and omplexity are determined bythe data.This paper presents a powerful new extension of theVMM model and the PST algorithm to a stohas-ti mixture of suh models, that are learned in a hi-erarhial ompetitive way using a deterministi an-nealing (DA) (Rose, 1998) approah. This problemis generally omputationally hard, similarly to datalustering. Only very simple sequenes an be or-retly segmented eÆiently in general (Freund & Ron,1995). Our model an in fat be viewed as an HMMwith a VMM attahed to eah state, but the learn-ing algorithm allows a ompletely adaptive strutureand topology both for eah state and for the wholemodel. The approah we take is information theo-reti in nature. The goal is to enable short desriptionof the data by a (soft) mixture of variable memoryMarkov models, eah one ontrolled by an MDL prin-iple (see (Barron et al., 1998) for a review). Thiswe do by modifying the original PST algorithm usingthe MDL formulation, while preserving its good learn-



ability properties. The mixture model is then learnedvia a generalized rate distortion theory (see Cover andThomas (1991), Ch. 13) approah. Here we take thelog-likelihood of the data by eah model as an e�e-tive distortion measure between the sequene and itsrepresentative model and apply the Blahut-Arimoto(BA) algorithm (see Cover and Thomas (1991)) to op-timally partition the sequene(s) between the VMMmodel entroids. Just like in many lustering algo-rithms we then update the models based on this op-timal partition of the sequene(s). In this way a nat-ural resolution parameter is introdued through theonstraint on the expeted tolerated distortion. This\temperature" like Lagrange multiplier is further usedin the deterministi annealing loop to ontrol the res-olution of the model. The hierarhial struture is ob-tained by allowing the models to split (the re�nementstep) after onvergene of the iterations between theBA algorithm and the VMM entroids update.This new algorithm exhibits several interesting fea-tures whih will be further disussed elsewhere. Itturns out that the interplay between the MDL andthe DA proedure prevents \over segmentation", byeliminating small models that fails to apture enoughdata. The model is thus \self regulated" in an inter-esting way. The algorithm is desribed in Se. 2, 3 andfurther disussed in Se. 5.In Se. 4 we apply the algorithm to two types ofdatasets. The �rst is a mixture of interhanged textsin 5 di�erent European languages. The model wasable to identify both the orret number of languagesand the segmentation of the text sequene betweenthe languages to a resolution of a few letters. We thenapply the algorithm to the muh harder problem ofprotein segmentation. We briey show here that thealgorithm is able to identify biologially meaningfulsub-sequenes within the proteins, whih orrespondto important funtional sub-units known as proteindomains. This extends earlier work on protein lassi-�ation using the PST algorithm (Bejerano & Yona,2001) and opens a way for new appliations of this ap-proah in bioinformatis, further pursued in (Bejeranoet al., 2001) and elsewhere.2. Single Soure ModelingIn this setion we will de�ne variable memory Markovproesses, review an eÆient data struture for theirrepresentation from (Ron et al., 1996) and present anew non-parametri learning algorithm that we willlater use as a ore for the segmentation proess.

2.1 Variable Memory Markov ProessesGiven a string �x, over a �nite alphabet �, that wassequentially generated by some statistial soure G,the probability that G has generated that partiu-lar sequene an always be written as: PG(�x) =PG(x1::xn) = Qni=1 PG(xijx1::xi�1). In this setionwe assume G to be stationary and ergodi (Cover &Thomas, 1991). We de�ne a ontext of xi to be anysubstring xi�m::xi�1 for m � 0. If m = 0 we saythat the ontext of xi is the empty string, denotedby �. Further we de�ne C to be any �nite subset ofstrings in �� that inludes �. We say that xi�m::xi�1,or �, is the C-ontext of xi if it is the longest suÆxof x1::xi�1 in C. Proess G respets ontext set C ifPG(xijx1::xi�1) = PG(xijC-ontext(xi)) for all i. Thelength of C-ontext(xi) is the memory of proess G atplae i, and it may vary with i.2.2 Predition SuÆx Trees (PSTs)A ontext set C may be eÆiently represented using atree. By assoiating a distribution vetor over � witheah node of the tree we get a PST1 (see Fig. 1). For-mally, a PST T is a j�j-ary tree that satis�es:1. For eah node eah outgoing edge is labeled by asingle symbol � 2 �, while there is at most one edgelabeled by eah symbol.2. Eah node of the tree is labeled by a unique strings (a ontext) that orresponds to a 'walk' starting fromthat node and ending in the root of the tree. We iden-tify nodes with their labels and label the root node bythe empty string �.3. A probability vetor Ps(�) is assoiated with eahnode s. Ps(�) represents the distribution over the sym-bol oming immediately after ontext s2.We de�ne sufT (x1::xi) as the longest sequenexi�m::xi that makes a path in T when we start fromthe root and traverse the edge labeled by xi, from therewe traverse the edge labeled by xi�1 et., until there isno appropriate edge to ontinue with or we have tra-versed the whole string3. If there is no edge labeledby xi at the root we say that sufT (x1::xi) = �. Theolletion of all node labels in T make up our set ofmemorized ontexts. (It is easy to see that any ontextset may be represented by a PST.)1A Predition SuÆx Tree is related to, but di�ers froma lassial suÆx tree (see (Apostolio & Bejerano, 2000)).2Ps(�) = P (next symbol is �jlast symbols were s).3Note that we do not neessarily stop at a leaf.
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(.05,.25,.4,.25,.05 )(.1,.1,.35,.35,.1)Figure 1. An example of a PST over the alphabet � =fa; b; k; l; rg. The vetor near eah node is the probabilitydistribution for the next symbol. E.g., the probability toobserve k after the substring bara, whose largest suÆx inthe tree is ra, is P (kjbara) = Pra(k) = 0:4.2.3 Prediting and Generating using PSTsHere we de�ne the probability measure that a PST Tindues on the spae of all strings �x 2 �n, for any givenn. Given a string �x 2 �n and a PST T the probabilitythat �x was generated by T is:PT (�x) = nYi=1PT (xijx1::xi�1) = nYi=1PsufT (x1::xi�1)(xi)When T is used as a generator, it generates a symbolxi aording to the distribution PsufT (x1::xi�1).For the sake of onsisteny we would like the internalnodes of T to hold marginal distributions: Ps(�) =P�̂2� PT (�̂s)PT (s) P�̂s(�).2.4 Learning PSTsWe now turn to present a new MDL driven algorithmfor PST learning. The algorithm is non-parametriand exhibits self-regularization. It is generalized tohandle weighted data, whih will appear later on.The inputs to the algorithm are a string �x = x1::xnand a vetor of weights �w = w1::wn, where eah wiis a weight assoiated with xi (0 � wi � 1)4. Wewill denote w(xi) � wi. You may think of w(xi) as ameasure of on�dene we give to the observation xi.For now you may assume all wi = 1.For a string s we say that sxi 2 �x if it is a substringof �x ending at plae i. We de�ne:ws(�) � Xxi=� and sxi2�xw(xi)and w(s) �P�2� ws(�). Clearly ws(�)w(s) is an empirialestimate for Ps(�).4Generalization to a set of strings is straightforward andtherefore omitted here for ease of notation.

The idea behind MDL is to minimize the total length(in bits) of model desription together with the odelength of the data when it is enoded using the model.When oding a single node s we should enumerate itssons and enode the distribution vetor Ps. The �rsttakes j�j bits - bit � denotes the presene of son �. Forthe seond it is suÆient to ode all the ounts ws(�).Sine the total amount of data \passing through" nodes5 is w(s) the ounts should be oded to within au-ray pw(s). Thus the desription size of s is:Size(s) = j�j+ j�j2 � log2(w(s))Denoting by Ts the subtree of T rooted at node s:Size(Ts) = Size(s) + X�s2T Size(T�s)(s 2 T means that s is a node in T ). The minimalaverage ode length per symbol, for all symbols odedusing node s, is given by the entropy of Ps, H(Ps) ��P�2� Ps(�) � log2(Ps(�)). The equivalent quantityfor a subtree Ts is thus a weighted sum given by:H(Ts) = X�s2T w(�s)w(s) �H(T�s) + X�s=2T w(�s)w(s) �H(Ps)Summing this altogether we get:TotalSize(Ts) = Size(Ts) + w(s) �H(Ts)Our goal is to minimize TotalSize(�) whih is the totaldesription length of the whole tree together with alloded data (as all data passes through the root node�). The algorithm works in two steps. In step I weextend all the nodes that are potentially bene�ial, i.e.by using them we may derease the total size. Clearlyonly those nodes whose desription size is smaller thanthe ode length of data passing through them whenthat data is oded using the parent node distributionare of interest. In step II the tree is reursively prunedso that only truly bene�ial nodes remain. If a hildsubtree T�s of some node s gives better ompression(respeting its own desription length) than that of itsparent node, that subtree is left, otherwise it is pruned.The algorithm is given in Fig. 23. Sequene Segmentation AlgorithmNow suppose that a given string �x was generated byrepeatedly swithing between several di�erent PSTmodels with some upper bound on the alternationrate. I.e., there are k PSTs and a partition of �x into5suf(x1::xi�1) ends with s.



Learn PST(String �x, Weights �w)1. T = Build PST(�x, �w)2. Prune(T , �)The two steps:I. Build PST (String �x, Weights �w)1. Start with T having a single node �.2. Reursively for eah s 2 T and � 2 �If Size(�s) < H(Ps) � w(�s) ThenAdd node �s to T .II. Prune (Tree T , node s)1. For eah � 2 � suh that �s 2 T :(a) Prune(�s)(b) If TotalSize(T�s) > H(Ps) � w(�s) ThenDelete subtree T�sFigure 2. The PST learning algorithm.l � k ontiguous segments, with length of eah seg-ment greater than some onstant value L, suh thateah segment was generated by a single PST out of k.Our goal is to �nd k0 PST models and a segmentationof �x that will be as lose as possible to the originalones.This problem is similar to the problem of �nding thebest number and parameters for a Gaussian mixturemodel of points in Rn. Given a string �x and a ve-tor of assignment probabilities we an build a PSTmodel and estimate its parameters. Alternatively, agiven model indues probabilities on all substrings of�x. Alternating between these two estimations is theessene of the EM algorithm in any mixture model.This alternating estimation algorithm an be embed-ded in a deterministi annealing (DA) proedure toallow for inreasing resolution, or number of mixtureomponents. In our ase, however, we do not allowour PST models to swith at every symbol, but ratherrequire ontiguous segments. The fundamental reasonfor limiting the model swithing frequeny is that tooshort segments do not enable reliable disriminationbetween di�erent models.We apply deterministi annealing sine it an avoidloal minima e�etively and it is an elegant frameworkfor generating hierarhial strutures, though it mayprodue sub-optimal results (see (Rose, 1998)).Next we give some de�nitions and desribe the Blahut-Arimoto and our soft lustering algorithm. We thenembed it in the DA framework to obtain the hierarhi-al segmentation. See Fig. 3 for shemati desriptionof the omplete algorithm.
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Figure 3. A shemati desription of the algorithm.3.1 De�nitionsLet T = fTjgkj=1 be the set of PSTs of size k we areurrently working with. We de�ne wj(xi) � P (Tj jxi)to be the probability that a symbol xi is assigned tomodel Tj6.In order to estimate the quality of a given partition wede�ne a distane (loal distortion) between a symbolxi and a model Tj to be negative log likelihood of Tjon a window of size 2M + 1 around xi:d(xi; Tj) = � i+MX�=i�M lnPTj (x�jx1::x��1) :The role of the window is to smooth the segmentationand to enable reliable estimation of the log-likelihood.The global distortion, i.e. the average distane betweensegments and the orresponding models, of an assign-ment is given by:hdi = 1n nXi=1 kXj=1 d(xi; Tj) � P (Tj jxi) :3.2 The Blahut-Arimoto AlgorithmFirst we want to �nd the optimal assignment proba-bilities P (Tj jxi) for a �xed set of PST models, T , on-strained by the allowed distortion levelD. Rate distor-tion theory (Cover & Thomas, 1991, Ch. 13) providesus with the optimal assignment via:minfP (Tj jxi) : hdi�D;Pkj=1 P (Tj jxi)=1g I(�x; T ) (1)6The vetor of weights �wj is later used to retrain Tj .



where I is the mutual information between �x and TI(�x; T ) = 1n nXi=1 kXj=1 P (Tj jxi) � log P (Tj jxi)P (Tj)and P (Tj) the proportion of data assigned to model jP (Tj) = 1n nXi=1 P (Tj jxi)In rate distortion theory Eq. 1 is alled the rate dis-tortion funtion, and is denoted by R(D).By minimizing the mutual information we in fat en-able minimal desription length of the sequenes us-ing the PST models, subjet to a given distortiononstraint. Sine our distortion, an expeted log-likelihood, is also the optimal ode length by themodel, it is fully onsistent with the MDL framework.We thus try to �nd a mixture of PSTs that enable shortdesription of the omplete observation sequene, un-der some ontiguity requirements from the resultingsegmentation.We employ the alternating minimization proedure,known as the Blahut-Arimoto algorithm, whih isguaranteed to onverge to the optimal assignment:Blahut-Arimoto(P (T1); ::; P (Tk), �)Repeat until onvergene:1. 8i; j : P (Tj jxi) = P (Tj)e��d(xi;Tj)Pk�=1 P (T�)e��d(xi;T�)2. 8j : P (Tj) = 1nPni=1 P (Tj jxi)Here the distortion onstraint, D, is imposed by theorresponding Lagrange multiplier �.3.3 Soft ClusteringNow we go one step further by allowing to modify thePST models. This is analogous to the entroid re-estimation in lustering. We want to obtain a good(low distortion) segmentation of �x for a given value of� (the assignment probabilities are given by 1: in theBA algorithm).We approah this problem using a soft lustering pro-edure. Given an initial set of k PSTs T , we parti-tion the sequene using the BA algorithm and thenretrain all k PSTs, using the assignment probabilitiesP (Tj jxi) obtained from the BA as weight vetors �wjfor the Learn PST proedure. These two steps are re-peated until onvergene:

Soft Clustering(T , P (T1); ::; P (Tk), �)Repeat until onvergene:1. Blahut-Arimoto(P (T1); ::; P (Tk), �)2. 8j : Tj = Learn PST(�x, �wj)Here the Lagrange multiplier � plays the role of res-olution parameter and prevents from falling into loalminima.At every given distortion level, D, a limited numberof PSTs K is suÆient to ahieve D. When k > Ksome of the PSTs ollapse into a single model - a phe-nomenon learly desribed in (Rose, 1998) - or remainwithout data (P (Tj) = 0). The latter is aused by therequirement of having ontiguous segments in the �nalsegmentation. Beause of this requirement the om-petition between the models \pushes out" the mod-els who don't \aquire" enough data in favor of thosehaving more data. In this manner the algorithm \selfregulates" its global omplexity.3.4 Deterministi Annealing andthe Segmentation AlgorithmThe landsape of the problem de�ned in this setionis typially riddled with loal minima and it is om-putationally diÆult to obtain the optimal solution.Usually a suessful way of �nding a good solution isthrough deterministi annealing: a series of solutionsto the soft lustering problem is found, starting froma low value of resolution (inverse \temperature") pa-rameter � and gradually inreasing it, while allowingmodels to split in two when neessary.The splitting proedure is straightforward:Split PSTs(T , P (T1); ::; P (Tk))Replae eah Tj in T by two new models:1. Start with two exat opies of Tj : Tj1 and Tj22. For eah node s in Tj and for eah � 2 �:(a) Selet f� = 1; � = 2g or f� = 2; � = 1gwith probability 12 / 12 .(b) Perturb and normalize the ounts vetors:For Tj� : ws(�) = (1 + ) �ws(�) (jj � 1)For Tj� : ws(�) = (1� ) � ws(�)3. P (Tj1 ) = 12P (Tj); P (Tj2) = 12P (Tj)For eah PST T in T we reate two opies of T andperform random antisymmetri perturbations of theounts vetors in eah node of the two opies. Thenwe replae T with the two obtained PSTs while dis-tributing P (T ) equally among them.We are �nally ready to outline the omplete algorithm.



We start with T inluding a single \average" PST Tthat is trained on the full sequene �x with w(xi) = 1for all i. We pik an initial value of �, split T andpartition �x among the resulting models, T1 and T2.We then split T again and repeat. If a model is foundto have lost its data it is eliminated. When the numberof survived models stops inreasing we inrease � andthen repeat the whole proess.The segmentation algorithm:Initialization:For all i, w1(xi) = 1T1 = Learn PST(�x, �w1)T = fT1g, P (T1) = 1� = �0, kprev = jT jAnnealing loop:1. Split PSTs(T , P (T1); ::; P (Tk))2. Soft Clustering(T , P (T1); ::; P (Tk), �)3. Remove all Tj suh that P (Tj) = 0 from T .4. If kprev � jT j thenInrease �5. kprev = jT jSets of segments that are assigned with high probabil-ity to the same model over a long range of � are stablelusters that ontain important information about thestatistial struture of our sample.4. Appliations: Multilingual Text andProtein Sequene SegmentationIn our �rst example we onstrut a syntheti text om-posed of alternating fragments of �ve other texts in �vedi�erent languages: English, German, Italian, Frenhand Russian, using standard transripts to onvert allinto lower ase Latin letters with blank substituting allseparators. The length of eah fragment taken is 100letters, whih means that we are swithing languagesevery two sentenes or so. The total length of the textwas 150000 letters (30000 from eah language).We made several independent runs of our algorithm.In every run, after 2000-3000 aumulated innermost(BA) iterations we got a lear-ut, orret segmenta-tion of the text into segments orresponding to thedi�erent languages, aurate up to a few letters (SeeFig. 4, 5 for a typial example)7. Moreover, in all runs,further splitting of all 5 language models resulted instarvation and subsequent removal of 5 extra models,taking us bak to the same segmentation as before.7Corret segmentation was ahieved even at a swithingrate of 50 letters per segment, but of poorer quality.
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