Unsupervised Sequence Segmentation by a
Mixture of Switching Variable Memory Markov Sources

Yevgeny Seldin
Gill Bejerano
Naftali Tishby

SELDINQCS.HUJI.AC.IL
JILL@QCS.HUJI.AC.IL
TISHBY@CS.HUJI.AC.IL

School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel

Abstract

We present a novel information theoretic al-
gorithm for unsupervised segmentation of se-
quences into alternating Variable Memory
Markov sources. The algorithm is based on
competitive learning between Markov mod-
els, when implemented as Prediction Suffiz
Trees (Ron et al., 1996) using the MDL prin-
ciple. By applying a model clustering pro-
cedure, based on rate distortion theory com-
bined with deterministic annealing, we ob-
tain a hierarchical segmentation of sequences
between alternating Markov sources. The al-
gorithm seems to be self regulated and au-
tomatically avoids over segmentation. The
method is applied successfully to unsuper-
vised segmentation of multilingual texts into
languages where it is able to infer correctly
both the number of languages and the lan-
guage switching points. When applied to
protein sequence families, we demonstrate
the method’s ability to identify biologically
meaningful sub-sequences within the pro-
teins, which correspond to important func-
tional sub-units called domains.

1. Introduction

Unsupervised segmentation of sequences has become
a fundamental problem with many important applica-
tions such as analysis of texts, handwriting and speech,
neural spike trains and bio-molecular sequences. The
most common statistical approach to this problem, us-
ing hidden Markov models (HMM), was originally de-
veloped for the analysis of speech signals, but became
the method of choice for statistical segmentation of
most natural sequences. HMMSs are predefined para-
metric models and their success crucially depends on
the correct choice of the state model - the observa-

tion distribution attached to each of the states of the
Markov chain. In the common application of HMM
the architecture and topology of the model are prede-
termined and the memory is limited to first order. It is
rather difficult to generalize these models to hierarchi-
cal structures with unknown a-priory state-topology
(see (Fine et al., 1998) for an attempt).

An interesting alternative to the HMM was proposed
in Ron et al. (1996) in the form of a sub class of prob-
abilistic finite automata, the variable memory Markov
(VMM) sources. While these models can be weaker as
generative models, they have several important advan-
tages: (i) they capture longer correlations and higher
order statistics of the sequence; (ii) they can be learned
in a provably optimal PAC like sense using a con-
struction called prediction suffix tree (PST)(Ron et al.,
1996); (iii) they can be learned very efficiently by linear
time algorithms (Apostolico & Bejerano, 2000); and
(iv) their topology and complexity are determined by
the data.

This paper presents a powerful new extension of the
VMM model and the PST algorithm to a stochas-
tic mixture of such models, that are learned in a hi-
erarchical competitive way using a deterministic an-
nealing (DA) (Rose, 1998) approach. This problem
is generally computationally hard, similarly to data
clustering. Only very simple sequences can be cor-
rectly segmented efficiently in general (Freund & Ron,
1995). Our model can in fact be viewed as an HMM
with a VMM attached to each state, but the learn-
ing algorithm allows a completely adaptive structure
and topology both for each state and for the whole
model. The approach we take is information theo-
retic in nature. The goal is to enable short description
of the data by a (soft) mixture of variable memory
Markov models, each one controlled by an MDL prin-
ciple (see (Barron et al., 1998) for a review). This
we do by modifying the original PST algorithm using
the MDL formulation, while preserving its good learn-

ability properties. The mixture model is then learned
via a generalized rate distortion theory (see Cover and
Thomas (1991), Ch. 13) approach. Here we take the
log-likelihood of the data by each model as an effec-
tive distortion measure between the sequence and its
representative model and apply the Blahut-Arimoto
(BA) algorithm (see Cover and Thomas (1991)) to op-
timally partition the sequence(s) between the VMM
model centroids. Just like in many clustering algo-
rithms we then update the models based on this op-
timal partition of the sequence(s). In this way a nat-
ural resolution parameter is introduced through the
constraint on the expected tolerated distortion. This
“temperature” like Lagrange multiplier is further used
in the deterministic annealing loop to control the res-
olution of the model. The hierarchical structure is ob-
tained by allowing the models to split (the refinement
step) after convergence of the iterations between the
BA algorithm and the VMM centroids update.

This new algorithm exhibits several interesting fea-
tures which will be further discussed elsewhere. It
turns out that the interplay between the MDL and
the DA procedure prevents “over segmentation”, by
eliminating small models that fails to capture enough
data. The model is thus “self regulated” in an inter-
esting way. The algorithm is described in Sec. 2, 3 and
further discussed in Sec. 5.

In Sec. 4 we apply the algorithm to two types of
datasets. The first is a mixture of interchanged texts
in 5 different European languages. The model was
able to identify both the correct number of languages
and the segmentation of the text sequence between
the languages to a resolution of a few letters. We then
apply the algorithm to the much harder problem of
protein segmentation. We briefly show here that the
algorithm is able to identify biologically meaningful
sub-sequences within the proteins, which correspond
to important functional sub-units known as protein
domains. This extends earlier work on protein classi-
fication using the PST algorithm (Bejerano & Yona,
2001) and opens a way for new applications of this ap-
proach in bioinformatics, further pursued in (Bejerano
et al., 2001) and elsewhere.

2. Single Source Modeling

In this section we will define variable memory Markov
processes, review an efficient data structure for their
representation from (Ron et al., 1996) and present a
new non-parametric learning algorithm that we will
later use as a core for the segmentation process.

2.1 Variable Memory Markov Processes

Given a string Z, over a finite alphabet ¥, that was
sequentially generated by some statistical source G,
the probability that G has generated that particu-
lar sequence can always be written as: Pg(z) =
Pg(zy.2,) = [], Pa(zi|zi..xi-1). In this section
we assume G to be stationary and ergodic (Cover &
Thomas, 1991). We define a contest of x; to be any
substring z;_m,..x;—1 for m > 0. If m = 0 we say
that the context of z; is the empty string, denoted
by A. Further we define C' to be any finite subset of
strings in ¥* that includes A\. We say that x;_,,..z;_1,
or A, is the C-context of x; if it is the longest suffix
of x1..x;_1 in C. Process G respects context set C if
Pg(zi|z1..25—1) = Pg(x;|C-context(x;)) for all i. The
length of C-context(z;) is the memory of process G at
place 7, and it may vary with z.

2.2 Prediction Suffix Trees (PSTs)

A context set C' may be efficiently represented using a
tree. By associating a distribution vector over ¥ with
each node of the tree we get a PST?! (see Fig. 1). For-
mally, a PST T is a |X|-ary tree that satisfies:

1. For each node each outgoing edge is labeled by a
single symbol ¢ € X, while there is at most one edge
labeled by each symbol.

2. Each node of the tree is labeled by a unique string
s (a context) that corresponds to a 'walk’ starting from
that node and ending in the root of the tree. We iden-
tify nodes with their labels and label the root node by
the empty string A.

3. A probability vector Ps(o) is associated with each
node s. P;(o) represents the distribution over the sym-
bol coming immediately after context s2.

We define suf,.(x;..x;) as the longest sequence
Ti_m..T; that makes a path in T when we start from
the root and traverse the edge labeled by z;, from there
we traverse the edge labeled by z;_; etc., until there is
no appropriate edge to continue with or we have tra-
versed the whole string®. If there is no edge labeled
by z; at the root we say that suf,.(zi..x;) = X\. The
collection of all node labels in T make up our set of
memorized contexts. (It is easy to see that any context
set may be represented by a PST.)

!A Prediction Suffix Tree is related to, but differs from

a classical suffix tree (see (Apostolico & Bejerano, 2000)).
2P, () = P(next symbol is o|last symbols were s).
3Note that we do not necessarily stop at a leaf.

(.05,.4,.05,.4,.1)

(.05,.5,.15,.2,.1)

(2,2,2,2,:2)

(1,.1,.35,.35,.1) (.05,.25,.4,.25,.05)

(6,.1,1,.1,.1)

Figure 1. An example of a PST over the alphabet ¥ =
{a,b,k,l,r}. The vector near each node is the probability
distribution for the next symbol. E.g., the probability to
observe k after the substring bara, whose largest suffix in
the tree is ra, is P(k|bara) = Pro(k) = 0.4.

2.3 Predicting and Generating using PSTs

Here we define the probability measure that a PST T
induces on the space of all strings € X", for any given
n. Given a string Z € X" and a PST T the probability
that £ was generated by T is:

n

Pr(z) = HPT($i|331--$i71) = HPsufT (e1..2:i_1) (Ti)

i=1 i=1

When T is used as a generator, it generates a symbol
z; according to the distribution PsufT (21..2i1)"

For the sake of consistency we would like the internal
nodes of T to hold marginal distributions: Ps(o) =

Pr(6s
2ses %P& ().
2.4 Learning PSTs

We now turn to present a new MDL driven algorithm
for PST learning. The algorithm is non-parametric
and exhibits self-regularization. It is generalized to
handle weighted data, which will appear later on.

The inputs to the algorithm are a string £ = z1..x,
and a vector of weights w = w;..w,, where each w;
is a weight associated with z; (0 < w; < 1)1 We
will denote w(z;) = w;. You may think of w(z;) as a
measure of confidence we give to the observation x;.
For now you may assume all w; = 1.

For a string s we say that sz; € Z if it is a substring
of Z ending at place i. We define:

Yo wlw)

;=0 and Sr;ET

ws (o)

and w(s) = Y 5, ws(o). Clearly wws((:)) is an empirical
estimate for Py(o).

“Generalization to a set of strings is straightforward and
therefore omitted here for ease of notation.

The idea behind MDL is to minimize the total length
(in bits) of model description together with the code
length of the data when it is encoded using the model.
When coding a single node s we should enumerate its
sons and encode the distribution vector P;. The first
takes |X| bits - bit o denotes the presence of son o. For
the second it is sufficient to code all the counts ws (o).
Since the total amount of data “passing through” node
5% is w(s) the counts should be coded to within accu-
racy v/w(s). Thus the description size of s is:

Size(s) = ||+ 2 -1og, ()

Denoting by T the subtree of T rooted at node s:

Size(Ts) = Size(s) + Z Size(Tys)
oseT

(s € T means that s is a node in T'). The minimal
average code length per symbol, for all symbols coded
using node s, is given by the entropy of Ps, H(P;) =
— > ey, Ps(0) - logy(Ps(0)). The equivalent quantity
for a subtree T is thus a weighted sum given by:

H(T,) = Z w(os)

oseT

w(os)

CH(Tys)+ Y

os¢T

w(s) HH (F)

Summing this altogether we get:
TotalSize(T;) = Size(Ts) + w(s) - H(T)

Our goal is to minimize T'otal Size(\) which is the total
description length of the whole tree together with all
coded data (as all data passes through the root node
A). The algorithm works in two steps. In step I we
extend all the nodes that are potentially beneficial, i.e.
by using them we may decrease the total size. Clearly
only those nodes whose description size is smaller than
the code length of data passing through them when
that data is coded using the parent node distribution
are of interest. In step II the tree is recursively pruned
so that only truly beneficial nodes remain. If a child
subtree T,,s of some node s gives better compression
(respecting its own description length) than that of its
parent node, that subtree is left, otherwise it is pruned.
The algorithm is given in Fig. 2

3. Sequence Segmentation Algorithm

Now suppose that a given string & was generated by
repeatedly switching between several different PST
models with some upper bound on the alternation
rate. Le., there are kK PSTs and a partition of Z into

Ssuf(wy..wi—1) ends with s.

Learn_PST(String z, Weights w)

1. T = Build_PST(z, w)
2. Prune(T, X)

The two steps:

I. Build_PST (String T, Weights w)

1. Start with T having a single node .
2. Recursively for each s € T and 0 € &
If Size(os) < H(Ps) - w(os) Then
Add node os to T'.

II. Prune (Tree T, node s)

1. For each ¢ € ¥ such that s € T
(a) Prune(os)
(b) If TotalSize(T»s) > H(Ps) - w(os) Then
Delete subtree T,

Figure 2. The PST learning algorithm.

[> k contiguous segments, with length of each seg-
ment greater than some constant value L, such that
each segment was generated by a single PST out of k.
Our goal is to find k' PST models and a segmentation
of Z that will be as close as possible to the original
ones.

This problem is similar to the problem of finding the
best number and parameters for a Gaussian mixture
model of points in R™. Given a string and a vec-
tor of assignment probabilities we can build a PST
model and estimate its parameters. Alternatively, a
given model induces probabilities on all substrings of
Z. Alternating between these two estimations is the
essence of the EM algorithm in any mixture model.
This alternating estimation algorithm can be embed-
ded in a deterministic annealing (DA) procedure to
allow for increasing resolution, or number of mixture
components. In our case, however, we do not allow
our PST models to switch at every symbol, but rather
require contiguous segments. The fundamental reason
for limiting the model switching frequency is that too
short segments do not enable reliable discrimination
between different models.

We apply deterministic annealing since it can avoid
local minima effectively and it is an elegant framework
for generating hierarchical structures, though it may
produce sub-optimal results (see (Rose, 1998)).

Next we give some definitions and describe the Blahut-
Arimoto and our soft clustering algorithm. We then
embed it in the DA framework to obtain the hierarchi-
cal segmentation. See Fig. 3 for schematic description
of the complete algorithm.

Soft Clustering
Blahut—Arimoto
update o -
Refinement Annealing
P(T;x;) 1 o
l T Split Increase
update Tj B
ATy i !
retrain
T

Figure 3. A schematic description of the algorithm.

3.1 Definitions

Let 7 = {T;}%_, be the set of PSTs of size k we are
currently working with. We define w;(x;) = P(Tj|z;)
to be the probability that a symbol z; is assigned to
model T;°.

In order to estimate the quality of a given partition we
define a distance (local distortion) between a symbol
z; and a model T; to be negative log likelihood of T}
on a window of size 2M + 1 around z;:

i+ M
d(z;, Tj) = — Z In Pr, (za|®1..20-1) -
a=i—M

The role of the window is to smooth the segmentation
and to enable reliable estimation of the log-likelihood.
The global distortion, i.e. the average distance between
segments and the corresponding models, of an assign-
ment is given by:

n k

(=53 dlai, 1)) - Pyl

i=1 j=1

3.2 The Blahut-Arimoto Algorithm

First we want to find the optimal assignment proba-
bilities P(T}j|x;) for a fized set of PST models, T, con-
strained by the allowed distortion level D. Rate distor-
tion theory (Cover & Thomas, 1991, Ch. 13) provides
us with the optimal assignment via:

min I(z,T) (1)
{P(Ly]e:) « (<DYF | P(Tlei)=1}

®The vector of weights w; is later used to retrain 7.

where [is the mutual information between T and T

P(T;|z:)

P(Tj|z;) - log Py

16,7) =~
1

n
1=

k

1J

and P(T}) the proportion of data assigned to model j
1 n
P(Ty) =~ > P(T|z;)
i=1

In rate distortion theory Eq. 1 is called the rate dis-
tortion function, and is denoted by R(D).

By minimizing the mutual information we in fact en-
able minimal description length of the sequences us-
ing the PST models, subject to a given distortion
constraint. Since our distortion, an expected log-
likelihood, is also the optimal code length by the
model, it is fully consistent with the MDL framework.
We thus try to find a mixture of PSTs that enable short
description of the complete observation sequence, un-
der some contiguity requirements from the resulting
segmentation.

We employ the alternating minimization procedure,
known as the Blahut-Arimoto algorithm, which is
guaranteed to converge to the optimal assignment:

Soft_Clustering(7, P(T1),.., P(Tk), B)

Repeat until convergence:

1. Blahut-Arimoto(P(T4), .., P(Tk), B)

Blahut-Arimoto(P(T4), .., P(Tk), §)

Repeat until convergence:

P(T;)e A= Ty)
S P(Ta)em PG Ta)
P(T) =L 3" P(T)|w:)

_TL

1. Vi,5: P(Tj|z;) =

2. Vj:

Here the distortion constraint, D, is imposed by the
corresponding Lagrange multiplier 5.

3.3 Soft Clustering

Now we go one step further by allowing to modify the
PST models. This is analogous to the centroid re-
estimation in clustering. We want to obtain a good
(low distortion) segmentation of Z for a given value of
B (the assignment probabilities are given by 1. in the
BA algorithm).

We approach this problem using a soft clustering pro-
cedure. Given an initial set of £ PSTs T, we parti-
tion the sequence using the BA algorithm and then
retrain all k¥ PSTs, using the assignment probabilities
P(Tj|z;) obtained from the BA as weight vectors ;
for the Learn PST procedure. These two steps are re-
peated until convergence:

2. Vj: T; = Learn PST(Z, w;)

Here the Lagrange multiplier 5 plays the role of res-
olution parameter and prevents from falling into local
minima.

At every given distortion level, D, a limited number
of PSTs K is sufficient to achieve D. When k£ > K
some of the PSTs collapse into a single model - a phe-
nomenon clearly described in (Rose, 1998) - or remain
without data (P(T};) = 0). The latter is caused by the
requirement of having contiguous segments in the final
segmentation. Because of this requirement the com-
petition between the models “pushes out” the mod-
els who don’t “acquire” enough data in favor of those
having more data. In this manner the algorithm “self
regulates” its global complexity.

3.4 Deterministic Annealing and
the Segmentation Algorithm

The landscape of the problem defined in this section
is typically riddled with local minima and it is com-
putationally difficult to obtain the optimal solution.
Usually a successful way of finding a good solution is
through deterministic annealing: a series of solutions
to the soft clustering problem is found, starting from
a low value of resolution (inverse “temperature”) pa-
rameter 8 and gradually increasing it, while allowing
models to split in two when necessary.

The splitting procedure is straightforward:

Split_PSTs(T, P(T1), .., P(T:))

Replace each T; in 7 by two new models:

1. Start with two exact copies of Tj: Tj, and Tj,
2. For each node s in T; and for each o € X:
(a) Select {¢{=1,£=2}or {¢(=2,£ =1}
with probability 3 / .
(b) Perturb and normalize the counts vectors:
For Tj.: ws(o) = (1+7)-ws(o) (h] <1)
For Tj.: ws(o) = (1 —7) - ws(0)

3. P(T3,) = 3P(T}), P(T,) = 5P(T;)

For each PST T in T we create two copies of T and
perform random antisymmetric perturbations of the
counts vectors in each node of the two copies. Then
we replace T with the two obtained PSTs while dis-
tributing P(T") equally among them.

We are finally ready to outline the complete algorithm.

We start with 7 including a single “average” PST T’
that is trained on the full sequence Z with w(z;) =1
for all i. We pick an initial value of 3, split 7 and
partition £ among the resulting models, 77 and T5.
We then split 7 again and repeat. If a model is found
to have lost its data it is eliminated. When the number
of survived models stops increasing we increase § and

then repeat the whole process.

The segmentation algorithm:

Initialization:

For all 4, wi(z;) =1

T, = Learn_PST(Z, @)
T ={T\}, P(Th) =1

B = Bo, kprev = |T|

Annealing loop:

1. Split_PSTs(T, P(T}), .., P(T}))
2. Soft_Clustering(7", P(T4),.., P(Tk), 3)
3. Remove all T; such that P(T}) =0 from 7.
4. If kprey > |T| then
Increase 3
5. kprev = |T]|

Sets of segments that are assigned with high probabil-
ity to the same model over a long range of 5 are stable
clusters that contain important information about the
statistical structure of our sample.

4. Applications: Multilingual Text and
Protein Sequence Segmentation

In our first example we construct a synthetic text com-
posed of alternating fragments of five other texts in five
different languages: English, German, Italian, French
and Russian, using standard transcripts to convert all
into lower case Latin letters with blank substituting all
separators. The length of each fragment taken is 100
letters, which means that we are switching languages
every two sentences or so. The total length of the text
was 150000 letters (30000 from each language).

We made several independent runs of our algorithm.
In every run, after 2000-3000 accumulated innermost
(BA) iterations we got a clear-cut, correct segmenta-
tion of the text into segments corresponding to the
different languages, accurate up to a few letters (See
Fig. 4, 5 for a typical example)”. Moreover, in all runs,
further splitting of all 5 language models resulted in
starvation and subsequent removal of 5 extra models,
taking us back to the same segmentation as before.

"Correct segmentation was achieved even at a switching
rate of 50 letters per segment, but of poorer quality.

x Italian
French

+ Russian
— German
— - English

-90

*— English —»e—— German —wl¢—— |tglian —»«—— French —»<—— Russian —»
I Il I Il I 1 I 1 I I
0 50 100 150 200 250 300 350 400 450 500

Text

Figure 4. Multilingual text segmentation. The graph
shows —d(z;,T;) for the first 500 letters of text, for all

T'j € {TE‘nglish, TGeTmany Tltaliany TFTS?’LChy TRussian}- The
true segmentation appears at the bottom of the graph.

Also, in most runs linguistically similar languages (En-
glish and German, French and Italian) separated at
later stages of the segmentation process (Fig. 6 gives
an example), suggesting a hierarchical structure over
the discovered data sources.

Next, we briefly demonstrate the potential of applying
our method to protein domain discovery and classifica-
tion. A domain is defined as an autonomous functional
sub-unit of a protein. Having used a family of related
protein sequences as our text®, Fig. 7 shows for a typ-
ical family member how our models have pinpointed
the two known domains of this protein. The domains
are seen here to coincide with the two conserved re-
gions elucidated in this protein family. The ability to
segment, and in fact sub-classify these domains in an
automated unsupervised manner holds great potential
and is further explored in (Bejerano et al., 2001).

Following a referee’s suggestion we tried limiting the
depth (and thus power) of our PST models to examine
their added benefit. For languages, using zero depth
PSTs (single root node) deteriorated the performance
drastically. The best we could separate were two lan-
guages alternating every 200 letters, and even that at
very poor quality. However, already when limited to
depth one, the models performed comparable to the
unrestricted models both for languages and proteins
(with some loss in signal strength). This attests to the
fact that first order dependencies already suffice to dif-

8Each protein sequence is represented by a string over
a standard alphabet of the 20 amino acids.

x ltalian
French
+ Russian
— German
— - English

English | German

sl
ing to do once or twice she hadbe charakteristisch und faslic
Text

Figure 5. Zoom in on a transition region from En-
glish to German. The text on the x-axis corresponds
to ¢ = 70..130. Note the correspondence of the transi-
tion point into German to the English-like beginning “be
charakteristisch...” of the German segment.

ferentiate between sources in these particular cases.

We have also tried to restrict the BA loop to a single
pass and it appears that for some cases this improves
the performance. This happens because fewer BA it-
erations leave more place for the soft clustering (and
thus model retraining) steps, and by looking through
a wider range of (intermediate) models the system is
able to ”sense” and attain better solutions.

5. Discussion and Further Work

The sequence segmentation algorithm we describe and
evaluate in this paper is a combination of several dif-
ferent information theoretic ideas and principles, natu-
rally combined into one new coherent procedure. The
core algorithm, the construction of Prediction Suffix
Trees, is essentially a source coding loss-less compres-
sion method. It approximates a complex stochastic
sequence by a probabilistic automaton, or a Markov
model with variable memory length. The power of
this procedure, as demonstrated on both natural texts
and on protein sequences, is in its ability to capture
short strings (suffixes) that are significant predictors
- thus good features - for the statistical source. We
combine the PST construction with another informa-
tion theoretic idea - the MDL principle - and obtain a
more efficient estimation of the PST, compared with
its original learning algorithm.

R - Russian

o z
R+I+F+E+G 7Ita\|an

|
F - French
L H G - German
0.9 : +F+E+G E - English
0.8 r— —
.
0.7r
r ! F+E+G
o ¥
L —
0.6
. / r
Los < 4

- —~

T X O i — 5
! . W [’
B : K ¥ { iR
o i _ << =< =\
3 o i iy -
§ o & \ :
0 \ L L A Lad L L L :L\\
0 100 200 300 400 500 600 700 800 900

cumulative Blahut-Arimoto iteration number
B=12—p=13

B= 1.0—>p=11

Figure 6. Source separation. The proportion of text as-
signed to each model is shown for all models, as a function
of the iterations of our innermost loop. Bifurcations are
the splitting events and graphs dropping off to zero show
models dying out. Increments in 8 occur after the number
of models converges at a given temperature. Languages
captured by each model after the soft clustering has con-
verged are pointed out. Notice how the order in which the
languages separate from the primary joint model matches
language relatedness.

Our second key idea is to embed the PST construc-
tion in a lossy compression framework by adopting the
rate-distortion theory into a competitive learning pro-
cedure. Here we treat the PST as a model of a single
statistical source and use the rate distortion framework
(i-e., the Blahut-Arimoto algorithm) to partition the
sequences between several such models in an optimal
way. Here we specifically obtain a more expressive sta-
tistical model, as miztures of (short memory, ergodic)
Markov models lay outside of this class, and can be
captured only by much deeper Markov models. This
is a clear advantage of our current approach over mix-
tures of HMMs (as done in (Fine et al., 1998)) since
mixtures of HMMs are just HMMs with constrained
state topology.

The analogy with rate-distortion theory enables us to
take advantage of the trade-off between compression
(rate) and distortion, and use the Lagrange multiplier
(3, required to implement this trade-off, as a resolu-
tion parameter. The deterministic annealing frame-
work follows naturally in this formulation and provides
us with a simple way to obtain hierarchical segmenta-
tion of very complex sequences. As long as the under-
lying statistical sources are distinct enough, compared
to the average alternation rate between them, our seg-
mentation scheme should perform well.

*iﬁ:EE
%
5

* %
* oy Fk

I

-dx,T)

100}

-120

-140

|
|
|
|
[|
«homeobox »
| I 1

‘ x
X x
| &
—160*: k-
L

L I I
50 100 150 200 250 300 350
Protein sequence

Figure 7. Segmentation of a member of the Paired
Box protein family. The PAX6 SS protein (Swissprot
acc. 057582) is shown. The boundaries of the two func-
tional domains of the protein are marked, showing excel-
lent fit with our unsupervised segmentation, which in fact
suggests a finer sub division within the first domain.

Several natural extensions of our ideas are possible.
One may replace the PST with even more efficient
loss-less coding schemes, such as the Context-Tree-
Weighting algorithm (Willems et al., 1995). This pow-
erful method trades the MDL principle for a Bayesian
formulation, essentially averaging efficiently over all
possible PSTs for a given sequence. The disadvantages
are the much larger data structures required here, and
the absence of the clear features that emerge from the
VMM model. An opposite approach, hinted toward
the end of Sec. 4 suggests that we may benefit from
replacing our generative source models with discrimi-
native ones, aimed not so much at capturing the sta-
tistical richness in each source but rather at differen-
tiating between them.

Another interesting extension is the segmentation of
one sequence based on the prediction of another, re-
lated, sequence (such as the prediction of protein struc-
ture from its sequence) by replacing the PST with its
kin, the probabilistic transducer (Singer, 1997). This
can then be embedded in the information bottleneck
method (Tishby et al., 1999), which extends rate dis-
tortion theory to relevant compression of one sequence
with respect to another one, to enable relevant segmen-
tation of related pairs of natural sequences.

Acknowledgments

The authors wish to thank Hanah Margalit for useful
discussions. GB is supported by a grant from the Min-

istry of Science, Israel. Work is partly supported by
grants from the US-Israel Bi-national Science Founda-
tion (BSF) and the German Israeli Foundation (GIF).

References

Apostolico, A., & Bejerano, G. (2000). Optimal am-
nesic probabilistic automata or how to learn and
classify proteins in linear time and space. J. Com-
put. Biol., 7, 381-393.

Barron, A., Rissanen, J., & Yu, B. (1998). The min-
imum description length principle in coding and
modeling. IEEE Trans. Info. Theory, 44, 2743-2760.

Bejerano, G., Seldin, Y., Margalit, H., & Tishby, N.
(2001). Extraction of protein domains and signa-
tures through unsupervised statistical sequence seg-
mentation. Preprint.

Bejerano, G., & Yona, G. (2001). Variations on proba-
bilistic suffix trees: statistical modeling and predic-
tion of protein families. Bioinform., 17, 23—43.

Cover, T. M., & Thomas, J. A. (1991). Elements of
information theory. Wiley Series in Telecommuni-
cations. New York, NY: John Wiley & Sons.

Fine, S., Singer, Y., & Tishby, N. (1998). The hierar-
chical Hidden Markov Model: Analysis and applica-
tions. Mach. Learn., 32, 41-62.

Freund, Y., & Ron, D. (1995). Learning to model se-
quences generated by switching distributions. Com-
put. Learn. Theory (COLT) 8 (pp. 41-50). New
York, NY: ACM press.

Ron, D., Singer, Y., & Tishby, N. (1996). The power
of amnesia: Learning probabilistic automata with
variable memory length. Mach. Learn., 25, 117-149.

Rose, K. (1998). Deterministic annealing for cluster-
ing, compression, classification, regression and re-
lated optimization problems. IEEE Trans. Info.
Theory, 80, 2210-2239.

Singer, Y. (1997). Adaptive mixtures of probabilistic
transducers. Neural Comp., 9, 1711-1733.

Tishby, N., Pereira, F., & Bialek, W. (1999). The
information bottleneck method. In Allerton confer-
ence on communication, control and computation,
vol. 37, 368-379.

Willems, F. M. J., Shtarkov, Y. M., & Tjalkens, T. J.
(1995). The context-tree weighting method: basic
properties. IEEE Trans. Info. Theory, 41, 653—664.

